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Prediction of the charge response kernel
 Linnéa Andersson, Yunqi Shao, Lisanne Knijff, Chao Zhang

                            Uppsala Universitet

The charge response kernel (CRK) can be used to calculate response properties of atomic 
systems such as the charge response from an external field or potential and the polarizability 
tensor. The CRK can be defined from first principles using conceptual density functional 
theory. In this work, the atom-condensed CRK is learnt from the molecular polarizability 
using machine learning (ML) models and it is subsequently used for the response-charge 
prediction under an external field (potential). We find that the predicted CRK gives a 
physical scaling of the polarizability with molecular size and that matrix-inversion is not 
necessarily needed. This opens up a route for efficient atomistic simulations of 
electrochemical systems.  1

1Yunqi Shao et al, 2022, Electron. Struct. 4 014012

 
Figure 1: Response prediction from atomistic machine 
learning via conceptual DFT.
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Excited State Dynamics from Supervised
and Unsupervised Learning Perspectives

Matheus de Oliveira Bispo*, Max Pinheiro Jr.*, Mario Barbatti*,†

*Aix-Marseille University, CNRS, ICR, Marseille, France.
†Institut Universitaire de France, 75231 Paris, France.

Non-Adiabatic Molecular Dynamics (NAMD) simulations are essential to shed light in the
study of photo-excited molecular systems. One approach to NAMD is surface hopping 1,2 (SH),
which is a mixed quantum-classical method that relies on a stochastic algorithm to switch
between different electronic states during dynamics propagation. This method requires very
accurate descriptions of potential energy surfaces (PESs) of each electronic state, as well as
their respective gradients  2. Due to the complexity of these excited states calculations, they
require high computational  cost and time to be performed. Furthermore, SH deals with large
ensembles of hundreds of trajectories, and analyzing them is crucial to better understand the
underlying photochemistry involved. To tackle these issues, Machine Learning (ML) has proven to
be a valuable asset. This work presents a case study for fulvene 3 to demonstrate how ML can
serve both as a surrogate method for performing NAMD via supervised learning 4 of PESs and as
a powerful analysis tool via unsupervised learning 1.

Figure 1: Machine Learning
workflow for studying non-adiabatic
molecular dynamics using Newton-X,

MLatom and ULaMDyn.

1 Barbatti, M. et al. J. Chem. Theory 
Comput. 2022. 18, 6851–6865. 

doi:10.1021/acs.jctc.2c
00804
2 T. do Casal et al. In Open Research Europe. 2021. 1, 49. doi:10.12688/openreseurope.13624.1

3 Toldo, J. et al. Figshare. 2021. doi:10.6084/M9.figshare.14446998.V1

4 Dral, P. O. et al. Top Curr Chem. 2021, 379, 27. doi:10.1007/s41061-021-00339-5



Fingerprint-based deep neural networks can
model thermodynamic and optical properties

of eumelanin DHI dimers
Daniel Bosch,a Jun Wang,b Lluís Blancafort*a 

aDepartament de Química, Institut de Química Computacional i Catàlisi, Universitat de Girona.
Facultat de Ciències, C/M. A. Capmany 69, 17003 Girona, Spain.
bJiangsu  Key  Laboratory  for  Chemistry  of  Low-Dimensional  Materials,  Jiangsu  Engineering
Laboratory  for  Environment  Functional  Materials,  Huaiyin  Normal  University,  No.  111  West
Changjiang Road, Huaian 223300, Jiangsu, P. R. China.

Eumelanin is the photoprotecting biopolymer1 in animals and has great promise as a smart
biomaterial.2 It  is  composed  of  oligomers  of  5,6-dihydroxyindole  (DHI)  and  DHI  2-
carboxylic acid (DHICA) of unknown chemical structure,3 with a large chemical space of
possible  material  constituents.  Here  we  use  deep  neural  networks  based  on  structural
fingerprints  to  model  the  thermodynamic  stability  and electronic  excitation  energy of  a
library  of  DHI  dimers  with  different  connectivity  and  oxidation  state.4-5 We  obtained
prediction errors of 6% for the stability and 9% for the excitation energy in our previous
work, but adding to the input representation a Lewis structure descriptor that classifies the
dimers as having a single or a double bond between the constituent monomer fragments, or a
zwitterionic resonance structure, improves the errors by up to 4%, so we can postulate that
these electronic structure features are well correlated with the stability and excitation energy
endpoints. Modeling of the oscillator strengths is less satisfactory, presumably because of
the difficulty of working with a data set where n,π* and π,π* states are mixed. Overall, our
work shows the potential of our set up to screen the properties of larger oligomer data sets.

Figure 1: DHI dimers broken down to fingerprints, which are used to train neural networks for 
predicting the stability and optical absorption of the dimers.

1 M. d'Ischia, K. Wakamatsu, F. Cicoira et al., Pigment Cell Melanoma Res. 2015, 28, 520-544.
2 E. Di Mauro, R. Xu, G. Soliveri, C. Santato, MRS Commun. 2017, 7, 141-151.
3 C.-T. Chen, F. J. Martin- Martinez, G. S. Jung, M. J. Buehler, Chem. Sci. 2017, 8, 1631-1641.
4 J. Wang, L. Blancafort, Angew. Chem. Int. Ed. 2021, 60, 18800-18809.
5 D. Bosch, J. Wang, L. Blancafort, Chem. Sci. 2022, 13(31), 8942–8946.



Machine learning for identification  

of new cannabinoids 

Šimon Budzák,1 Anna Mária Kotočová,1 Jiři Zapletal,1  

Alžbeta Michalíková2  
1Department of Chemistry, Matej Bel University, Faculty of Natural Sciences,  

Tajovského 40, 974 01 Banská Bystrica, Slovakia 
2Department of Computer Science, Matej Bel University, Tajovského 40, 974 01  

Banská Bystrica, Slovakia 

Tetrahydrocannabinol (THC), a primary active compound found in Cannabis plants, is 

among the long-known narcotics, subject to varying legislative regulations across countries. 

Post-2000, a surge in designer drugs occurred, featuring structures interacting with 

cannabinoid receptors and producing narcotic effects. Notably, these substances were not 

explicitly listed in regulated substance laws. Consequently, they were openly sold as 

components of bath salts or labelled as "souvenirs" accompanied by warnings against 

consumption.1 The emergence of unconventional synthetic structures, coupled with users 

lacking an understanding of the effects and “proper” dosages, resulted in severe intoxications 

and fatalities.2 A recent addition to this domain is the semi-synthetic HHC 

(hexahydrocannabinol).3 Due to legislative delays of 1-2 years behind market dynamics and 

the time required for expert evaluations, we propose a classification deep neural network as a 

preliminary market barrier, before expert decision. This network distinguishes between 

cannabinoid molecules and other organic compounds. In our contribution, we highlight 

challenges associated with balancing unequal subclasses and different inputs for classification 

(structure, mass spectrum with different resolution, etc). 
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Figure 1: Molecular structure of THC, semisynthetic HHC and synthetic cannabinoid 5F-MDMB-

PICA. 

Acknowledgement 

Financial support of the Slovak Research and Development Agency (APVV-20-0098) is 

acknowledged.  

 
1 Alves V. L. et al. Critical Reviews in Toxicology, 2020, 50, 359-382. 
2 Adamowicz P., Forensic Science International, 2016, 261, e5-e10. 
3 Russo, F. et al. Scientific Reports, 2023, 13, 11061. 



Embedding Pair Coupled Cluster Doubles–Based
Methods in Machine Learning Generated Potentials

Rahul Chakraborty,1 Diksha Dhawan,2 Paweł Tecmer 1

1 Institute of Physics, Faculty of Physics, Astronomy and Informatics
Nicolaus Copernicus University in Toruń, Poland

2 Virginia Tech Center for Quantum Information Science and Engineering
Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA

Reliable quantum-chemical modeling of large molecular systems still remains an 
elusive question. Wave function theory (WFT) based methods, although highly 
accurate, are limited by very high computational scaling. Quantum embedding 
methods have shown promising results to address this challenge where the 
molecular structure is partitioned into a system part studied by more reliable WFT 
methods and the environment part modeled by low-level methods.1,2,3 The pair 
coupled cluster doubles (pCCD)-based methods  have recently been combined with 
density functional theory (DFT) in this framework.4 Here, the system part, embedded
in a static potential representing the environment and obtained with DFT, is studied 
with pCCD and its dynamic correlation corrected variants. The method has been 
successfully applied to study the vertical excitations of uranyl halides. The quality of 
the embedding potential has been analyzed by comparing the orbital correlations 
between supramolecular and embedded structures. 

Recent works have shown the promising performance of machine learning (ML) 
generated embedding potentials in QM/MM studies.5,6 In the next step of our work, 
we try to use ML to generate the static embedding potential, removing the need to 
employ  computational resources for DFT calculations for the same. The method can
be extended to generate other WFT-based potentials for a more precise depiction of 
the effects of the environment, such as dispersion through the inclusion of linearized 
coupled cluster  corrections.

———————————————————

1P. Huang, E. A. Carter, J. Chem. Phys. 125, 084102 (2006).
2A. S. P. Gomes, C. R. Jacob, L. Visscher, Phys. Chem. Chem. Phys. 10, 5353–5362 (2008).
3P. Tecmer, K. Boguslawski, Phys. Chem. Chem. Phys. 24, 23026 (2022).
4R. Chakraborty, K. Boguslawski, P. Tecmer, Phys. Chem. Chem. Phys. 25, 25377–25388 (2023).
5S. Bose, D. Dhawan, S. Nandi, R. R. Sarkar, D. Ghosh, Phys. Chem. Chem. Phys. 20, 22987-22996
(2018)
6K. Zinovjev, J. Chem. Theory Comput. 19, 1888-1897 (2023)



Machine-learning atomic simulation for
revealing the active sites of catalytic ethene

epoxidation on silver
Dongxiao Chen, Lin Chen, Cheng Shang, Zhipan Liu
Department of Chemistry, Fudan University, Shanghai 200433, China

        Ag-catalyzed ethene epoxidation, as the only viable route for making ethene oxide
(EO) in industry, has been puzzled for more than 50 years on the active site, due to the lack
of tools to probe reaction at high temperatures and high pressures. Here, by combining the
advanced  machine-learning  grand  canonical  global  structure  exploration1 and  pathway
sampling techniques2 with the  in-situ catalysis experiments, we identify a unique surface
oxide phase, namely O5 phase, grown on Ag(100) under industrial catalytic conditions. This
O5  phase features square-pyramidal subsurface O and strongly adsorbed ethene, which can
selectively  convert  ethene  to  EO.  The  other  Ag  surface  facets,  Ag(111)  and  Ag(110),
although also reconstructing to surface oxide phases, only produce CO2  due to the lack of
subsurface O. The complex in-situ surface phases with distinct selectivity contribute to an
overall medium (50%) selectivity of Ag catalyst to EO. Our further catalysis experiments
with in-situ infrared spectrum confirm the theory-predicted IR-active C=C vibration (1583
cm-1)  of  adsorbed  ethene  on  O5 phase  and  the  microkinetics  simulation  results.3 The
structure and activity of active phase help to settle the long dispute on the nature of active
oxygen in ethene epoxidation caused by the “pressure gap”.

Figure 1: The active sites and reaction mechanisms of ethene epoxidation on 
silver, together with the evidences from in-situ catalytic experiments.

1D. Chen. et al. ACS Catal. 2021, 11, 8317-8326. doi: 10.1021/acscatal.1c02029
2D. Chen. et al. J. Chem. Phys. 2022, 156, 094104. doi: 10.1063/5.0084545
3D. Chen#, L. Chen#, Q.-C. Zhao, Z.-X. Yang, C. Shang, Z.-P. Liu. Nat. Catal. (in minor revision)



Evaluating AIQM1 on Reaction Barrier Heights
Yuxinxin Chen, Yanchi Ou, Peikun Zheng,

Yaohuang Huang, Fuchun Ge, Pavlo O. Dral*

State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key
Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, and College

of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China             
Email: dral@xmu.edu.cn

Artificial intelligence-enhanced quantum mechanical method 1 (AIQM1) is a general-
purpose method that was shown to achieve high, coupled-cluster-level, accuracy for many
applications with a speed close to its baseline semiempirical quantum mechanical (SQM)
method ODM2*1, 2. Here, we evaluate the, hitherto unknown, performance of out-of-the-box
AIQM1 without any refitting for reaction barrier heights on 8 datasets including in total ca.
24 thousand reactions3. This evaluation shows that AIQM1’s accuracy strongly depends on
the type of transition state. The built-in uncertainty quantification helps identify confident
predictions and the accuracy of confident AIQM1 predictions is approaching the level of
popular DFT methods for most reaction types. Encouragingly, AIQM1 is substantially better
than its baseline semi-empirical method ODM2*. AIQM1 is also rather robust for transition
state  optimizations  and  is  a  better  alternative  to  other  semi-empirical  methods  such  as
GFN2-xTB.  Single-point  calculations  with  high-level  methods  on  AIQM1-optimized
geometries can be used to significantly improve barrier heights.

AIQM1 can be accessed via our open-source package for atomistic machine learning
simulations MLatom4, 5 which can be used for free on the XACS cloud computing platform
at XACScloud.com. Tutorials for performing AIQM1 calculations, including the transition
state geometry optimizations, can be found at MLatom.com/AIQM1.

aRoot-mean-squared deviations in Å of geometries optimized at each method with respect to the reference geometries at
B3LYP in the BHPERI dataset (only for successful calculations)
bMean absolute errors in kcal/mol for CCSD(T)*/CBS single-point energy calculations on optimized geometries

1P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, and P. O. Dral, Nat. Commun. 2021, 12: 7022.
2P. Zheng, W. Yang, W. Wu, O. Isayev, and P. O. Dral, J. Phys. Chem. Lett. 2022, 13: 3479.
3Y. Chen, Y. Ou, P. Zheng, Y. Huang, F. Ge, and P. O. Dral, J. Chem. Phys. 2023, 158: 07410
4P. O. Dral, F. Ge, B. Xue, Y. Hou, M. P. Jr, J. Huang, M. Barbatti. Top. Curr. Chem. 2021, 379: 27.
5P. O. Dral, F. Ge, Y. Hou, P. Zheng, Y. Chen, M. Barbatti, O. Isayev, C. Wang, B. Xue, M. P. Jr, Y. Su, Y.     
Dai, Y. Chen, L. Zhang, S. Zhang, A. Ullah, Q. Zhang, Y. Ou.  2023, submitted. Preprint: 
arXiv:2310.20155v1 [physics.chem-ph]

mailto:dral@xmu.edu.cn
https://arxiv.org/abs/2310.20155v1
http://MLatom.com/AIQM1
https://XACScloud.com/
http://xmvb.xmu.edu.cn/
http://mlatom.com/


Locality and fluctuation effects inamino-acid
            based imidazolium ionic liquids 

Wenbo Dong, Jan Blasius, Luke Wylie, Tom Welton and Barbara Kirchner 

Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6,
D-53115 Bonn, Germany. E-mail: kirchner@thch.uni-bonn.de

2

Several amino-acid based imidazolium ILs are investigated through the use of ab initio molecular
dynamics (AIMD), which includes full polarisation.  The electric dipole moment distribution and
polarization is used as a means of characterizing and understanding these complex systems. 
Various charge scheme methods were analyzed (Wannier function, B oechl, Loewdin and Mullikenl̈
charge schemes and Voronoi tessellation) to determine their ability to predict dipole moments. 
These results and the following comparison of methods further deepen the knowledge of 
polarization by highlighting the importance of the anion and cation separately on polarizability 
contribution and the need to select a suitable method to predict these. We also present IR and 
Raman spectra in various imidazolium-based ILs with six amino acid as anions. The advantages of 
the Voronoi tesselation method being that it does not have the problem of the strong spikes in its 
time development are demonstrated by the comparison of the two methods and experimental data. 
We analyse the errors between theoretical and experimental data, which shows good correlation 
with the theoretical data. In addition, the theoretical spectroscopy shows the ability to separate 
components of a mixture accurately. The combination of theory and experiment can present more 
detailed data, such as theoretical data helping to isolate ions within the mixture and removing 
water. Besides, radial pair distribution functions (RDFs) and combined distribution 
functions (CDFs)  are used to characterise and understand the interactions within these complex 
systems.

                                                 
1K. Wendler. J. Chem. Theory Comput.  2011 , 7, 3040-3044. doi.org/10.1021/ct200375v  
2W. B. Dong. Phys. Chem. Chem. Phys. 2023 , 25, 24678-24685. doi.org/10.1039/d3cp02671j

 

Figure 1: Dipole moment distributions based on the Wannier center of 6ILs 

1



EQUIVARIANT MATRIX FUNCTION NEURAL
NETWORKS

lyes Batati1, Lars L. Schaaf1, Huajie Chen2; Gabor Csanyi1, Christoph Ortner3, Felix A.
Faber 1, 4

1 University of Cambridge, UK; 2 Beijing Normal University, China; 3 University of
British Columbia, Canada; 4 Data Science and Modelling, Pharmaceutical Sciences R&D,

AstraZeneca, Gothenburg, Sweden

Graph Neural Networks (GNNs), especially Message-passing neural networks (MPNNs),
have emerged as powerful architectures for learning on graphs in diverse applications,
including  as  forcefield.  However,  MPNNs face  challenges  when modeling  non-local
interactions  in  systems such as large conjugated molecules,  metals,  or amorphous
materials.

Although  Spectral  GNNs  and  traditional  neural  networks  such  as  recurrent  neural
networks  and  transformers  mitigate  these  challenges,  they  often  lack  extensivity,
adaptability,  generalizability,  computational  efficiency,  or  fail  to  capture  detailed
structural  relationships  or  symmetries  in  the  data.  To  address  these  concerns,  we
introduce  Matrix  Function  Neural  Networks  (MFNs),  a  novel  architecture  that
parametrizes  non-local  interactions  through  analytic  matrix  equivariant  functions.
Employing  resolvent  expansions  offers  a  straightforward  implementation  and  the
potential for linear scaling with system size.

The MFN architecture  achieves  is  able  to  capture  intricate  non-local  interactions in
quantum systems,  paving  the way  to  new state-of-the-art  force  fields,  and achives
state-of-the-art performance in standard graph benchmarks, such as the ZINC and TU
datasets.



Prediction of Acid Dissociation Using Machine
Learning with QTAIM

Emir A. Galván-García, Didier Nivón-Ramirez, Luis I. Reyes-García,
Rodolfo Gómez-Balderas

Laboratorio de Fisicoquímica Analítica, Unidad de Investigación Multidisciplinaria, Facultad de
Estudios Superiores–Cuautitlán, Universidad Nacional Autónoma de México.

Quantum chemistry  and machine  learning  have  intersected  to  enhance  our  ability  to
predict  pKa values.  This  study focuses  on leveraging machine learning algorithms with
electronic  density  descriptors,  rooted  in  the  Quantum  Theory  of  Atoms  in  Molecules
(Bader's  theory)1,  as  the  basis  for  database  construction.  The  pKa,  which  measures  the
acidity of a molecule, plays a crucial role in chemical reactivity and biological processes.
Accurate pKa predictions are vital  for  understanding molecular  behavior.  By combining
quantum mechanical principles with machine learning, we aim to advance our predictive
capabilities  for  this  critical  chemical  property2.  This  work  demonstrates  how  machine
learning can provide valuable insights into the relationship between electronic structure and
acid  dissociation,  with  the  potential  to  revolutionize  our  understanding  of  chemical
reactions3.

(1).Bader, R. F. W. Atoms in Molecules: A Quantum Theory; International Series of Monographs on 
Chemistry; Oxford University Press: Oxford, New York, 1994.
(2) Lawler, R.; Liu, Y.-H.; Majaya, N.; Allam, O.; Ju, H.; Kim, J. Y.; Jang, S. S. DFT-Machine 
Learning Approach for Accurate Prediction of p K a. J. Phys. Chem. A 2021, 125 (39), 8712–8722. 
(3) Mayr, F.; Wieder, M.; Wieder, O.; Langer, T. Improving Small Molecule pKa Prediction Using 
Transfer Learning With Graph Neural Networks. Front. Chem. 2022, 10.

Figure 1: Partitioning of Electron Density into Atomic Basins.



Optimization of incommensurate
organic/inorganic interface structures to study

superlubricity
Lukas Hörmann1, Johannes J. Cartus2, Oliver T. Hofmann2

1Department of Chemistry, University of Warwick, Coventry, United Kingdom
2Institute of Solid State Physics, Graz University of Technology, Graz, Austria

Organic/inorganic interface systems are highly relevant due to their tunability and propensity
to form incommensurate structures which potentially exhibit superlubricity between organic
and inorganic surfaces. The study of interface properties necessitates precise modelling of
interface  geometries  as  well  as  the  electronic  structure  using  accurate  first-principles
electronic structure methods. However, the system size of incommensurate structures renders
such  calculations  intractable.  Hence,  investigations  into  incommensurate  interfaces  have
been constrained to very simple model systems or highly simplified methods. To overcome
this  constraint,  we  have  devised  a  machine-learned  interatomic  potential  (MLIP)  using
Gaussian process regression. This potential can accurately compute energies and forces for
structures containing thousands to tens of thousands of atoms, offering a level of precision
on par with traditional first-principles methods, all while significantly reducing computation
costs.  Through  this  method,  we  quantify  the  breakdown  of  the  low-friction  state  in
incommensurate structures due to the formation of static distortion waves. Moreover,  we
extract design principles for incommensurate interface systems that inhibit the formation of
static distortion waves and facilitate low friction coefficients.1

Figure 1: Overview of our work; We first train an MLIP based on DFT training 
data; Then we use the MLIP to perform geometry optimisations of large-scale 
surface structures; Finally The MLIP allows us to determine friction coefficients.

1 Hörmann, L., Cartus, J. J., & Hofmann, O. T. (2023). Impact of Static Distortion Waves on   
Superlubricity.   ACS Omega  .  

https://doi.org/10.1021/acsomega.3c05044
https://doi.org/10.1021/acsomega.3c05044


Development of Machine Learning Potentials
and Implementations of Molecular Dynamics
and Infrared Spectra Simulations in MLatom

Yi-Fan Hou and Pavlo O. Dral

State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, Department of Chemistry, and College of Chemistry and

Chemical Engineering, Xiamen University, Xiamen 361005, China

Molecular  dynamic  (MD)  simulations  are  capable  of  calculating  a  wide  range  of
molecular properties, and infrared spectrum (IR) is one of them1. However, the acquisition
of  a  high-quality  MD  trajectory  is  usually  time  consuming,  requiring  at  least  tens  of
thousands  of  quantum chemical  calculations.  Fortunately,  machine  learning  and  related
methods provide us with good opportunity to accelerate such a procedure. In our MLatom
package2,  we  implemented  the  MD  and  IR  simulations3.  In  order  to  speed  up  these
simulations, we improved (p)KREG4 machine learning models, which employs kernel ridge
regression  (KRR)  with  relative-to-equilibrium  (RE)  molecular  descriptor  and  Gaussian
kernel  function.  Their  results  are  better  or  on  par  with  other  state-of-the-art  machine
learning models. The MLatom also has interfaces to other machine learning potentials5 and
quantum  mechanical  methods,  including  the  artificial  intelligence-enhanced  quantum
chemical method 1 (AIQM1)6, which is fast and accurate. Particularly, we showed on an
example that AIQM1 can produce IR spectra faster and of better quality than popular DFT3.

1M. Thomas, M. Brehm, R. Fligg, P. Vohringer, B. Kirchner, Phys. Chem. Chem. Phys. 2013, 15, 6608-6622.
2P. O. Dral, P. Zheng, B.-X. Xue, F. Ge, Y.-F. Hou, M. Pinheiro Jr, Y. Su, Y. Dai, Y. Chen, MLatom: A Package
for Atomistic Simulations with Machine Learning, Xiamen University, Xiamen, China, http://MLatom.com, 
2013–2023.
3L. Zhang, Y.-F. Hou, F. Ge, P. O. Dral, Phys. Chem. Chem. Phys. 2013, 25, 23467-23476.
4Y.-F. Hou, F. Ge, P. O. Dral, J. Chem. Theory Comput. 2023, 19, 2369-2379.
5a) P. O. Dral, F. Ge, B.-X. Xue, Y.-F. Hou, M. Pinheiro Jr, J. Huang, M. Barbatti, Top. Curr. Chem. 2021, 379, 
27. b) P. O. Dral, F. Ge, Y.-F. Hou, P. Zheng, Y. Chen, M. Barbatti, O. Isayev, C. Wang, B.-X. Xue, M. Pinheiro
Jr, Y. Su, Y. Dai, Y. Chen, S. Zhang, L. Zhang, A. Ullah, Q. Zhang, Y. Ou. MLatom 3: Platform for machine 
learning-enhanced computational chemistry simulations and workflows. arXiv:2310.20155v1 [physics.chem-ph]
2023. http://MLatom.com.
6P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, Nat. Commun. 2021, 12, 7022.



PiNNwall: Heterogeneous Electrode Models 

from Integrating Machine Learning and 

Atomistic Simulation 

Lisanne Knijff, Thomas Dufils, Yunqi Shao, Chao Zhang 

Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, P. O. Box 

538, 75121 Uppsala, Sweden 

 

Electrochemical energy storage always involves the capacitive process. The prevailing 

electrode model used to study such polarizable electrode-electrolyte systems is the Siepmann-

Sprik model, which has been recently extended to study the metallicity in the electrode model 

by including the Thomas-Fermi screening length. Nevertheless, a further extension to 

heterogeneous electrode models is required. Here, we address this challenge by integrating 

the atomistic machine learning code (PiNN)1 for generating the base charge2 and response 

kernel3 and the classical molecular dynamics code (MetalWalls). This leads to the 

development of the PiNNwall4 interface. Apart from the cases of chemically doped graphene 

and graphene oxide electrodes as shown in this study, the PiNNwall interface also allows us 

to probe polarized oxide surfaces in which both the proton charge and the electronic charge 

can coexist. Therefore, this work opens the door for modelling heterogeneous and complex 

electrode materials often found in energy storage systems. 

 

 

 
1Y. Shao, M. Hellström, P. D. Mitev, L. Knijff, C. Zhang. J. Chem. Inf. Model. 2020, 60, 1184. 
2 L. Knijff, C. Zhang. Mach. Learn.: Sci. Technol. 2021, 2, 03LT03. 
3 Y. Shao, L. Andersson, L. Knijff, C. Zhang. Electron. Struct. 2022, 4, 014012. 
4 T. Dufils, L. Knijff, Y. Shao, C. Zhang. J. Chem. Theory Comput. 2023, 19 (15), 5199-5209. 



The need for accurate exchange-correlation potential in KS-
DFT

                                        Vignesh Kumar  1  , Lucian Constantin2, Ireneusz Grabowski1, Szymon Śmiga1

                                         1) Institute of Physics, Nicolaus Copernicus University in Torun, Grudziądzka 5, 87-100 Toruń.
                                      2) Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125 Modena, Italy

The soul of any Density Functional Theory (DFT) calculation lies in the exchange-correlation 
functional. Hybrid exchange-correlation functionals are formulated by blending a fraction or 
complete exchange from Hartree-Fock theory or the optimized effective potential method with 
semi-local or local DFT. Another significant categorization of hybrid functionals is grounded in the 
range separation of the Coulomb term. Currently, there is an abundance of hybrid functionals 
created by combining HF exchange with LDA, GGA, or MGGA functionals. We conducted a 
comprehensive study of over 150 hybrid functionals using the available inverse Kohn-Sham method
and wave-function theory data. Our investigation unveiled crucial correlations between properties 
and the components used in constructing hybrid functionals. 



DMFF: An Open-Source Automatic
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In the simulation of molecular systems, the underlying force field (FF) model plays an
extremely  important  role  in  determining  the  reliability  of  the  simulation.  However,  the
quality of the state-of-the-art molecular force fields is still unsatisfactory in many cases, and
the FF parameterization process largely relies on human experience, which is not scalable.
To  address  this  issue,  we  introduce  DMFF,  an  open-source  molecular  FF  development
platform based on an automatic differentiation technique. DMFF serves as a powerful tool
for both top-down and bottom-up FF development. Using DMFF, both energies/forces and
thermodynamic quantities such as ensemble averages and free energies can be evaluated in a
differentiable way, realizing an automatic, yet highly flexible FF optimization workflow.
DMFF also eases the evaluation of forces and virial tensors for complicated advanced FFs,
helping the fast validation of new models in molecular dynamics simulation. DMFF has
been released as an open-source package under the LGPL-3.0 license and is available at
https://github.com/deepmodeling/DMFF. 1

1 W. X., J. L., et al., J. Chem. Theory Comput. 2023, 17, 19, 5897-5909
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1Y. Zhang, J. Jiang, and B. Jiang, , https://arxiv.org/abs/2111.04306.

 

Unlike the energy, which is a scalar property, machine learning (ML) of vector or tensor 
properties poses the additional challenge of achieving proper invariance (covariance) with respect 
to rotation of the molecule. For the energy gradients needed in molecular dynamics (MD), this is 
automatically fulfilled by taking analytic derivative of the energy, which is a scalar invariant 
(using properly invariant molecular descriptors). If the properties cannot be obtained by 
differentiation, the covariance could in principle be achieved automatically by adding many 
different orientations of the molecule in the training set, but this can be very costly. 

There have been several approaches suggested to properly treat this issue. For NAD couplings, it 
was possible to construct an auxiliary scalar quantity from which they are obtained by 
differentiation and thus guarantee the covariance. Another possible solution is to build the 
rotational equivariance into the design of a neural network employed in the model. A recent 
review of ML approaches to dipole moments and polarizabilities handling equivariance was 
written by Zhang et al. [1]

As a simpler alternative to approaches described in the literature, we propose the following 
technique, which does not require construction of an auxiliary property, from which the vector 
would be obtained as a derivative, nor a special equivariant ML technique to be employed. We 
suggest a three-step approach which makes use of the molecular tensor of inertia. In the first step, 
the molecule will be rotated using the eigenvectors of this tensor to its principal axes, i.e. if some 
vector property was already computed in the original orientation, it will be rotated to the new  
"canonical" orientation before being used for ML training. In the second step, the ML procedure 
shall predict the vector property relative to this particular orientation, based on a training set where 
all vector properties were in the coordinate system given by the principal axes. A rotationally 
non‑invariant descriptor can be employed in this ``standard orientation''. As third step, it remains 
to transform the ML estimate of the vector property back to the original orientation. This 
procedure should thus guarantee proper covariance of a vector property and is trivially extensible 
also to tensors like polarizability etc.

We have implemented this technique, using the MLAtom and Newton-X programs for ML and 
MD and performed its assessment on the dipole moment along MD trajectories of the 
1,2‑dichloroethane molecule.



Perspectives on Quantum Computing and
Machine Learning for Material Simulations
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Recently, the integration of machine learning in (atomistic) material simulation has become
increasingly  relevant.  At  the  same  time,  the  field  of  quantum computing  has  become
increasingly  more  mature  towards  practical  implementation.  The  field  of  quantum
computing  is  actively  seeking  potential  applications  for  which  it  could  perform better
compared  to  classical  computation.  Material  simulations  could  benefit  from  this
computational  power  in  hard  to  simulate  materials  and  dynamics.  Recent  proof  of  a
theoretical computational advantage with quantum machine learning1 shows potential for
integration with material simulation in order to improve simulation speed and accuracy.
Here, we give perspectives on this integration in atomistic electronic structure simulations
using quantum machine learning, towards its usage in molecular dynamics, and provide
prospective  interdisciplinary  directions  for  potential  computational  gain.  Among  the
directions  are  quantum kernel  methods  and  quantum neural  networks,  and  how these
methods could be integrated in molecular dynamics in the context of active learning.

1H.Y. Huang et al., Science, 2022, Vol 376, Issue 6598, pp. 1182-1186



Advanced Training-Data Generation for
Machine-Learned Potentials 

Moritz René Schäfer, Prof. Dr. Johannes Kästner 
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Molecular  dynamics  (MD) plays  a  crucial  role  in  the  field  of  atomistic  simulations  for
calculating thermodynamic and kinetic quantities of molecules and materials. Traditionally
descriptions of atomic interactions either rely on classical or quantum mechanical models
which  are  limited  in  accuracy  and  simulation  speed  respectively.  Machine  learning
potentials (MLPs) have emerged as a useful class of surrogate models that bridge this gap,
retaining most of the quantum mechanical accuracy at drastically reduced cost. However,
obtaining informative training data for these models is a challenging task, as the systems of
interest can have thousands of degrees of freedom with vastly different characteristic time
scales.

Biasing  the  dynamics  of  the  system  along  the  slowest  degrees  of  freedom  can
significantly decrease the time needed to obtain sufficiently informative data for the training
of MLPs. While traditional approaches to biasing MD often rely on hand-selected degrees of
freedom to enhance the sampling in1 , and MLIP data generation schemes rely on model
uncertainty2,  we introduce a data-driven way to identify the most informative degrees of
freedom  for  the  MLP  and  limit  the  bias  to  exploring  physically  relevant  parts  of
configuration space. The efficacy of this method is demonstrated by faithfully reproducing
the  free  energy  surface  of  alanine  dipeptide  using  an  MLP trained  on  a  few  hundred
datapoints.

Further,  efficient  execution  of  atomistic  machine  learning  workflows  relies  on  the
utilization of heterogeneous compute resources. While model training and MD simulations
are  most  efficient  on  GPUs,  reference  quantum  mechanical  computations  require  large
amounts of CPU cores. We introduce tools to flexibly split the tasks in a workflow across
the available hardware.

 

1A. Barducci,G. Bussi, and M. Parrinello. Phys. Rev. Lett. 2008, 100, 020603. 
2 M. Kulichenko, et al. Nat Comput Sci. 2023, 3, 230–239. 



AI Software Tools for Materials Development

Nico Segreto, Moritz Schäfer, Johannes Kästner

University of Stuttgart, Institute of Theoretical Chemistry
Pfaffenwaldring 55, Stuttgart

Machine learning (ML) is  already transforming the field of atomistic simulation and has wide-
ranging  implications  for  research  across  various  domains.  In  this  context,  we  introduce  Apax1

(Atomistic Learned Potential Package in JAX) - our latest open-source software package designed
to be user-friendly and developer-friendly.  Apax facilitates efficient data selection,  training,  and
inference with atomistic neural network potentials, utilizing the Gaussian Moment Descriptor2 for
construction  of  fast  atomistic  machine  learning  models.  Through  fitting  the  literature  dataset
SPICE3, it is demonstrated that Apax outperforms state-of-the-art models regarding speed, while
maintaining chemical accuracy.

Additionally, the efficacy of Apax is highlighted through advanced on-the-fly learning workflows
for  models  that  can  simulate  gas-surface  interactions.  A case  study  involves  the  training  and
simulations of atomic oxygen impacts on Al2O3 surfaces, showcasing Apax's  ability to simulate
statistical  quantities  like  scatter  kernels,  adsorption,  and  reflection  mechanisms.  These  insights
assist in the development of materials and technologies for designing satellites operating at very low
altitudes, where rest atmosphere consists mainly of reactive atomic oxygen. Experiments under such
conditions  are  currently  challenging  to  perform on  Earth,  and  results  have  high  uncertainties.
Atomistic simulation can provide valuable insights for designing robust materials, tailored to the
challenges of this environment, by also lowering uncertainties in more macroscopic simulation, thus
increasing the residence time of very low Earth orbit (VLEO) satellites.

1 https://github.com/apax-hub/apax
2     Zaverkin, V. & Kästner, J., J. Chem. Theory Comput., 2020, 16, 5410–5421.
3     Eastman, P. et al., Sci Data, 2023, 10, 11.
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One hidden yet important  issue for  developing neural  network potentials  (NNPs) is  the
choice of training algorithm. In this work,1 we compare the performance of two popular
training algorithms, the adaptive moment estimation algorithm (Adam)2 and the extended
Kalman  filter  algorithm  (EKF),3 using  the  Behler–Parrinello  neural  network  and  two
publicly accessible datasets of liquid water.4 It is found that NNPs trained with EKF are
more transferable and less sensitive to the value of the learning rate, as compared to Adam.
In both cases, error metrics of the validation set do not always serve as a good indicator for
the actual performance of NNPs. Instead, we show that their performance correlates well
with a Fisher information-based similarity measure.

Fig. Density evolution in constant pressure molecular dynamics simulations using
potentials trained with (a) the Adam optimizer and (b) the EKF optimizer. 10 separate

models were trained for each setup and the result plotted together. A significant difference in
density prediction is observed despite similar errors metrics during training.

1 Shao et al, J. Chem. Phys. 155, 204108 (2021).
2 Kingma et al., arXiv:1412.6980 (2017).
3 Ollivier, Electron. J. Statist. 12, 2930-2961 (2018).
4 Morawietz et al., Proc. Natl. Acad. Sci. U.S.A 113, 8368 (2016).
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Methanol synthesis on industrial Cu/ZnO/Al2O3 catalysts via the hydrogenation of CO and
CO2 mixture, is puzzling due to the nature of the active site and the role of CO2 in the feed
gas.  Herein,  with  the  large-scale  machine  learning  atomic  simulation,  we  develop  a
microkinetics-guided machine learning pathway search to automatocally explore thousands of
reaction pathways for CO2 and CO hydrogenations on thermodynamically favorable Cu–Zn
surface structures, including Cu(111), Cu(211), and Zn-alloyed Cu(211) surfaces, from which
the lowest energy pathways are identified.  We find that Zn decorates at the step-edge at
Cu(211) up to 0.22 ML under reaction conditions with the Zn–Zn dimeric sites being avoided.
CO2 and CO hydrogenations occur exclusively at the step-edge of the (211) surface with up to
0.11 ML Zn coverage, where the low coverage of Zn (0.11 ML) does not much affect the
reaction kinetics, but the higher coverages of Zn (0.22 ML) poison the catalyst. It is CO2

hydrogenation instead of CO hydrogenation that dominates methanol synthesis, agreeing with
previous isotope experiments. While metallic steps are identified as the major active site, we
show that  the  [−Zn–OH–Zn−] chains  (cationic  Zn)  can grow on Cu(111)  surfaces  under
reaction conditions, which suggests the critical role of CO in the mixed gas for reducing the
cationic  Zn  and  exposing  metal  sites  for  methanol  synthesis.  Our  results  provide  a
comprehensive picture on the dynamic coupling of the feed gas composition, the catalyst
active site, and the reaction activity in this complex heterogeneous catalytic system.

Figure 1: Contour plot for sampled reaction pairs, and the resulting reaction energy profile.

1Yun-Fei Shi, et al. J. Am. Chem. Soc. 2022, 144, 29, 13401-13414. doi: 10.1021/jacs.2c06044
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High proton metal nanoparticles (NP) see a lot of developments and interests as radiosensitizers for
radiotherapy. A new bimetallic Bi:Pt NP (d ≈ 5nm) coated in PEG-based ligands was developed at ISMO, Paris
Saclay using radiolysis. But what effects does the synthesis method have on the organization and surface of the
NP, and how is the latter going to interact with its environment? In addition, we investigated the possibility of
adapting a small-scale, low-cost machine learning tool to fill in the gap by the lack of force field parameters for
molecular dynamics.

We investigated the structure of the bimetallic core using semi-empirical methods and molecular DF on
a  selection  of  core-shell  and  alloy  initial  structures  (d  ≤  1nm).  We also  added PEG ligands  around the
optimized core to observe their interactions with the latter. The ChIMES model (Chebyshev interaction model
for efficient simulation) can design machine-learned force fields for the system to run in molecular dynamics
and has been used in simulations for molten carbon [1] and ambient water [2] We used the data generated by all
these DFT calculations to train the ChIMES machine-learned force fields and to bridge the gap between the
empirical size of the NPs and the models used.

We thus observed the explosion of  core-shell  structures  and the relative stability of  the alloy.  We
confirmed that the ligands are attached to the Pt atoms present on the surface. We designed three different data
training sets for the machine learning procedure, each providing us with a better understanding of the tool, and
leading us to obtain confident preliminary results as to the applicability of ChIMES to this metallic system.

Figure: Model of the optimized bimetallic NP and scheme of the ChIMES refinement process

[1] R.K. Lindsey, L.E. Fried, N. Goldman, J. Chem. Theory Comput., 13 6222 (2017)

[2] R.K. Lindsey, L.E. Fried, N. Goldman, J. Chem. Theory Comput. 15 436 (2019)

mailto:raphael.vangheluwe@universite-paris-saclay.fr
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Understanding  and  predicting  how  materials  respond  to  extreme
environments, such as high temperatures,  is  becoming increasingly important as
energy, space, and military technologies develop1. Using experimental approaches
to explore these relationships is often prohibitively expensive, time consuming, and
difficult.   Computational  methods,  on  the  other  hand,  suffer  from  high
computational requirements and high error margins. This prospective will offer a
brief  summary  of  developments  in  the  area  of  determining  finite  temperature
materials properties and identify opportunities for the application of data-driven and
machine  learning  methodologies  to  further  ameliorate  computational  costs  and
improve the accuracy of finite temperature simulations.

1A. Nisar et al., Ceramics International, 2020, Volume 46, Issue 16, Part A, Pages 25845-25853
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Nonadiabatic  excited-state  dynamics  simulations  of  molecules  and  molecular
assemblies  are  of  great  significance.1 This  research  field  has  been  boosted  by  the
development  of  on-the-fly  nonadiabatic  mixed  quantum-classical  (NA-MQC)  strategies.
However,  the  time-consuming  calculation  of  the  quantum  mechanical  (QM)  quantities
(energies, forces, and couplings between the electronic states) at each time step is the main
bottleneck of the on-the-fly NA-MQC simulations. Fortunately, the emergence of machine
learning (ML) algorithms shows promise for breaking this bottleneck, because ML is able to
inexpensively predict the required QM quantities.2 We use several ML models implemented
in MLatom3,4 to learn and predict energies and gradients during the dynamics propagation.
We also develop a  new active  learning strategy to  construct  the  training dataset  of  the
methylenimmonium cation.  The ML models  have good performance and the  population
obtained  from  ML nonadiabatic  dynamics  is  in  a  good  agreement  with  the  reference
population.

Figure 1:  Comparison between populations of the methylenimmonium cation obtained from 100
trajectories using SA-3-CASSCF(12,8)/6-31G(d) (Ref) and ML models.

1 R. Crespo-Otero, M. Barbatti, Chem. Rev. 2018, 118, 7026–7068.
2P. O. Dral, M. Barbatti, W. Thiel, J. Phys. Chem. Lett. 2018, 9, 5660–5663.
3P. O. Dral, F. Ge, B. Xue, Y. Hou, M. Pinheiro Jr, J. Huang, M. Barbatti. Top. Curr. Chem. 2021, 379, 27.
4 P. O. Dral, F. Ge, Y.-F. Hou, P. Zheng, Y. Chen, M. Barbatti, O. Isayev, C. Wang, B.-X. Xue, M. Pinheiro Jr,

Y. Su, Y. Dai, Y. Chen, S. Zhang, L. Zhang, A. Ullah, Q. Zhang, Y. Ou. MLatom 3: Platform for machine
learning-enhanced  computational  chemistry  simulations  and  workflows.  arXiv:2310.20155v1  [physic-
s.chem-ph] 2023. See MLatom.com @ XACScloud.com.

http://dr-dral.com/
http://xacs.xmu.edu.cn/
MLatom.com
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The hydration free energy (HFE) is an important thermodynamic property for a molecule,
because it  governs  many  physical,  chemical  and  biological  processes  in  the  aqueous
environment. Some  machine  learning  (ML)  models  have  been  built  based  on  molecular
fingerprints to estimate HFEs. However, it  is difficult for fingerprints to describe molecules
with unseen elements and/or fragments. To handle this problem, we designed four types of
descriptors which not explicitly include any atom-, bond- or geometry-specific information. 1
The first type is composed of the total dipole moment, anisotropic polarizability and vibrational
analysis results of solute molecules in vacuum. The second and third types are derived from the
electrostatic potential  distribution of solute molecules in vacuum. The last type includes the
solvent accessible surface area and shape similarities. Several regression ML models have been
trained  based  on these  descriptors  to  predict  experimental  HFEs collected  in  the  FreeSolv
database2.  The models trained on random split training sets show a better performance than
most  of  traditional  methods.  In  particular,  the  models  are  capable  to  predict  HFEs of  new
compounds with elements or fragments that are never seen in the training sets, which confirms
the high transferability of present descriptors among organic molecules. 

1 Zhang, Z.-Y.; Peng, D.; Liu, L.; Shen, L.; Fang, W.-H. J. Phys. Chem. Lett. 2023, 14, 1877–1884.
2 Mobley, D. L.; Guthrie, J. P. J. Comput. Aided Mol. Des. 2014, 28, 711–720
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Machine-Learned  Potentials  (MLPs)  enable  the  computation  of  energies,  forces,  and

various other properties with the accuracy of ab initio methods at vastly reduced inference
times.  Their data-driven nature necessitates a strong emphasis  on sufficient sampling of
training data to develop robust MLPs.  On this poster, I focus on the various methods of
generating and evaluating data for MLPs, with a particular emphasis on the example of the
room temperature ionic  liquid BMIM BF4.  The focus lies  on the diverse approaches  to
generating  and evaluating  data  for  MLPs in  this  context.  This  encompasses  not  only  a
multitude of different techniques but also the management of parameters, concluding with
the construction of computational graphs and adherence to FAIR data principles. 

Additionally, I will introduce different software packages, namely IPSuite1 for managing
MLP workflows,  including Learning on the  Fly methods,  and  ZnDraw2,  a  visualization
package designed for Machine Learning applications in Quantum Chemistry.

(1) IPSuite 0.1.1. https://github.com/zincware/IPSuite 
(2) ZnDraw 0.2.1. https://github.com/zincware/ZnDraw
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