
The 2nd International Symposium on
Machine Learning in Quantum

Chemistry

Invited Talks
(abstracts)

In alphabetic order of presenting author

SMLQC 2023SMLQC 2023
29/11 – 1/12, 2023

Uppsala University
Uppsala, Sweden



Integrating Explainability into Graph Neural Networks for the Prediction of
X-ray Absorption Spectra
 
A. Kotobi1, K. Singh2,3, D. Höche1, S. Bari4,5, R. H. Meißner1,6, A. Bande2,7

1Helmholtz-Zentrum Hereon, Institute of Surface Science, Geesthacht, DE 21502, 
Germany; 2Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, DE 
10409, Germany;
3Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, DE 14195, 
Germany; 4Deutsches Elektronen-Synchrotron (DESY), Hamburg, DE 22607, Germany; 
5Zernike Institute for Advanced Materials, University of Groningen, Groningen 9712, 
Netherlands; 6Hamburg University of Technology, Institute of Polymers and 
Composites, Hamburg, DE 21073, Germany; 7Leibniz University Hannover, Institute of
Inorganic Chemistry, Hannover, DE 30167, Germany

The use of sophisticated machine learning (ML) models, such as graph neural 
networks (GNNs), to predict complex molecular properties or all kinds of spectra
has grown rapidly [1,2]. However, ensuring the interpretability of these models’ 
predictions remains a challenge. For example, a rigorous understanding of the 
predicted X-ray absorption spectrum (XAS) generated by such ML models 
requires an in-depth investigation of the respective black-box ML model used. 
Here, this is done for different GNNs based on a comprehensive, custom-
generated XAS data set for small organic molecules. We show that a thorough 
analysis of the different ML models with respect to the local and global 
environments considered in each ML model is essential for the selection of an 
appropriate ML model that allows a robust XAS prediction. Moreover, we 
employ feature attribution to determine the respective contributions of various 
atoms in the molecules to the peaks observed in the XAS spectrum. By 
comparing this peak assignment to the core and virtual orbitals from the 
quantum chemical calculations underlying our data set, we demonstrate that it 
is possible to relate the atomic contributions via these orbitals to the XAS 
spectrum [3].

[1] Singh, K., Münchmeyer, J., Weber, L., Leser, U., Bande, A., J. Chem. Theory Comput. 18 
(2022) 4408.
[2] Kotobi, A., Schwob, L., Vonbun-Feldbauer, G. B., Rossi, M., Gasparotto, P., Feiler, C., 
Berden, G., Oomens, J., Oostenrijk, B., Scuderi, D., Bari, S., Meisner, R. H., Commun. 
Chem. 6 (2023), 6, 46.
[3] Kotobi, A., Singh, K., Höche, D., Bari, S., Meißner, R., Bande, A., J. Am. Chem. Soc. 145 
(2023) 22584.



AniSOAP: An Expansion of Density-
Correlation Machine Learning

Representations for Anisotropic Coarse-
Grained Particles

Rose K. Cersonsky  1  , Arthur Lin1, Kevin K. Hugeunin-Dumittan2, Yong-
Cheol Cho1,3, Jigyasa Nigam2

1)Department  of  Chemical  and Biological  Engineering,  University  of  Wisconsin,  Madison,  WI,
USA
2)Laboratory  of  Computational  Science  and  Modeling,   ́ Ecole  Polytechnique  F  ́ ed  ́ erale  de
Lausanne, Lausanne, Switzerland
3)Department of Computer Science and Engineering, University of Wisconsin, Madison, WI, USA

In understanding molecular interactions and modeling their  resultant behavior,  it  is  very
often a worthwhile endeavor to group one or more atoms as a theoretical ``unit'' or particle;
coarse-grained and top-down simulation approaches are an important tool and a lens with
which to study chemical systems. Similarly, machine learning (ML) methods have emerged
as a powerful tool for scientific inquiry, with the ability to elucidate new patterns within or
relationships between chemical spaces and observed properties, often in order to predict the
properties  of unseen systems. How do we incorporate the idea of atom grouping in the
context of machine learning? Density-based frameworks present a compelling avenue for
expansion, given that they can putatively be made flexible to any density expansion, even
anisotropic  density  fields  or  hard  particle  volumes.  Furthermore,  by  extending  these
frameworks to decouple molecule-level interactions from atom-atom site potentials, we gain
the ability to combine or compare representations across multiple scales. We propose and
demonstrate the first such anisotropic expansion of symmetrized density-based frameworks
for ML representations by taking the popular SOAP (Smooth Overlap of Atomic Positions)
formalism and demonstrating its expansion to simple anisotropic bodies'.  While we here
demonstrate the expansion for multivariate Gaussian densities, similar expansions can be
made for arbitrary anisotropic density fields. From this, we can derive fundamental insights
on  how  molecular  shape  influences  mesoscale  behavior,  as  well  as  understand  and
incorporate where individual atom-atom interactions remain important, as demonstrated via
analysis of benzene interactions determined by first principles. Moving forward, we present
AniSOAP as a powerful and flexible coarse-graining framework to systematically reduce
molecular degrees of freedom in complex, multiscale simulation.



Machine Learning Electronic Excitations in
Complex and Multichromophoric Systems

Lorenzo Cupellini, Edoardo Cignoni, Amanda Arcidiacono, Benedetta
Mennucci

Department of Chemistry and Industrial Chemistry, Via Moruzzi 13, 56124 Pisa, Italy

Most photophysical processes of chemical or biological interest occur in condensed phase,
within  “complex”  systems  where  chromophore-environment  interactions  and  structural
disorder  play  a  primary  role.  Faithful  quantum  chemical  modeling  of  these  processes
requires  a  multiscale  strategy that  accounts  for  all  interactions,1 as  well  as  a  thorough
sampling  of  the  configurational  ensemble  of  the  system.  Complete  modeling  of  these
processes is therefore limited by the computational cost of numerous accurate multiscale
calculations.  Machine  learning  (ML)  techniques  hold  great  promise  in  alleviating  the
computational  burden  of  quantum mechanical  calculations,  and  have  been  successfully
employed for the prediction of excited-state properties and dynamics.2,3 However, only few
ML models have been designed to account for the environment effects on excited states.4 

Here I will outline potential ML strategies to model excited states in complex systems,
showing  that  it  is  possible  to  incorporate  the  environment  effects  with  a  physically
constrained Gaussian process regression model. I will focus on light-harvesting pigment-
protin  complexes  as  an  example  of  complex  biological  system  where  excitations  are
delocalized over multiple chromophores and also tuned by the interactions with the protein.5

The obtained ML models6 not only reproduce small differences between identical pigments
in different protein pockets, but can also extrapolate to completely unseen environments.
Finally, these models can also help interpreting the solvatochromic effect of the protein.

1 M. Nottoli, et al.,Annu. Rev. Phys. Chem. 2021, 72, 489. doi:10.1146/annurev-physchem-090419-104031
2 J. Westermayr, P. Marquetand. Chem. Rev. 2021, 121, 9873. doi:10.1021/acs.chemrev.0c00749
3 P. Dral, M. Barbatti. Nat. Rev. Chem. 2021, 5, 388. doi:10.1038/s41570-021-00278-1
4 M. S. Chen et al., J. Phys. Chem. Lett. 2020, 11, 7559. doi:10.1021/acs.jpclett.0c02168
5 L. Cupellini et al., BBA – Bioenerg. 2020, 1861, 148049. doi:10.1016/j.bbabio.2019.07.004
6 E. Cignoni et al., J. Chem. Theory Comput. 2023, 19, 965. doi:10.1021/acs.jctc.2c01044

 Figure 1: Structure of a light-harvesting complex with the embedded
pigments, carotenoids (orange) and chlorophylls (blue and green)



Towards practical AI-enhanced computational 
chemistry 
Pavlo O. Dral 
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I will present our methods and software tools enabling practical AI-enhanced 
computational chemistry simulations and demonstrate their applications. The methods 
include the general-purpose, artificial intelligence-enhanced quantum mechanical method 1 
(AIQM1),1 which approaches the accuracy of the golden-standard, traditional CCSD(T)/CBS 
approach for many properties. Other methods focus on novel approaches for learning 
dynamics, such as our AI-quantum dynamics2 and 4D-spacetime atomistic AI3 approaches, 
which predict dynamics properties such as nuclear coordinates as the function of time and do 
not require iterative trajectory propagation as in classical MD. AIQM1 and AI-QD, along with 
many other methods such as a host of ML interatomic potentials, are implemented in our 
MLatom program package for user-friendly atomistic machine learning simulations, which 
can be run online using our MLatom@XACS (Xiamen atomistic computing suite) cloud-
based service.4 

Figure 1: Machine learning greatly speeds up quantum 
chemistry simulations as discussed in our reviews5,6 and an 
edited book7.  

 

 
1 P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral. Artificial Intelligence-Enhanced Quantum Chemical Method 
with Broad Applicability. Nat. Commun. 2021, 12, 7022. 
2 A. Ullah, P. O. Dral. Predicting the future of excitation energy transfer in light-harvesting complex with artificial 
intelligence-based quantum dynamics. Nat. Commun. 2022, 13, 1930. 
3 F. Ge, L. Zhang, Y.-F. Hou, Y. Chen, A. Ullah, P. O. Dral. Four-Dimensional-Spacetime Atomistic Artificial 
Intelligence Models. J. Phys. Chem. Lett. 2023, 14, 7732–7743. 
4 P. O. Dral, F. Ge, B.-X. Xue, Y.-F. Hou, M. Pinheiro Jr, J. Huang, M. Barbatti. MLatom 2: An Integrative Platform for 
Atomistic Machine Learning. Top. Curr. Chem. 2021, 379, 27. See MLatom.com @ XACScloud.com. 
5 P. O. Dral, M. Barbatti. Molecular Excited States Through a Machine Learning Lens. Nat. Rev. Chem. 2021, 5, 388–
405. 
6 P. O. Dral. Quantum Chemistry in the Age of Machine Learning. J. Phys. Chem. Lett. 2020, 11, 2336–2347. 
7 Quantum Chemistry in the Age of Machine Learning. Ed. P. O. Dral. Elsevier: Amsterdam, Netherlands, 2023. 

mailto:dral@xmu.edu.cn
http://dr-dral.com/
MLatom.com
http://xacs.xmu.edu.cn/


Restricted variance optimization:
geometries, intersections and then some

Ignacio Fdez. Galván, Roland Lindh

Department of Chemistry – BMC, Uppsala University, P. O. Box 576, SE-75123 Uppsala, Sweden

Multidimensional  optimization  problems  are  ubiquitous  and  routine  in  computational
chemistry.  A paradigmatic  example  is  molecular  structure  optimization,  where  a  local
minimum in a potential energy surface is to be found. The comparative simplicity of setup
and interpretation of such calculations should not, however, hide the fact that it is a complex
task: finding specific points in a high-dimensional space in as few iterations as possible,
with only local information. Typical (and robust and successful) optimization methods are
often based on a second-order Taylor expansion of the object function, that becomes more
and more accurate as the optimization reaches convergence.1

Recently, a number of methods have been proposed that use machine learning techniques
to construct a surrogate model that goes beyond the second-order expansion and are thus
able to better utilize all the information generated during the optimization process, to find
the target more efficiently. One such method is the restricted variance optimization (RVO),2

based on a Gaussian process regression surrogate model aided by chemical heuristics.
The RVO method has been applied to stable structure optimizations, as well as transition

states,  reaction  paths3 and  conical  intersections,4 showing  an  improved  efficiency  and
robustness compared to established conventional second-order optimization methods. An
extension to wave function (orbital) optimization is being developed, and results for single-
determinant SCF are promising, demonstrating the versatility of the approach.

1 H. B.  Schlegel.  Geometry Optimization.  Wiley Interdiscip.  Rev.:  Comput.  Mol.  Sci. 2011,  1,  790–809.
doi:10.1002/wcms.34

2 G. Raggi, I. Fdez. Galván, C. L. Ritterhoff, M. Vacher, R. Lindh. Restricted-Variance Molecular Geometry
Optimization  Based  on  Gradient-Enhanced  Kriging.  J.  Chem.  Theory  Comput. 2020,  16,  3989–4001.
doi:10.1021/acs.jctc.0c00257

3 I. Fdez. Galván, G. Raggi, R. Lindh. Restricted-Variance Constrained, Reaction Path, and Transition State
Molecular Optimizations Using Gradient-Enhanced Kriging. J. Chem. Theory Comput. 2021, 17, 571–582.
doi:10.1021/acs.jctc.0c01163

4 I.  Fdez.  Galván,  R.  Lindh.  Smooth Things Come in Threes:  A Diabatic  Surrogate  Model  for  Conical
Intersection Optimization. J. Chem. Theory Comput. 2023, 19, 3418–3427. doi:10.1021/acs.jctc.3c00389



Ab-Initio Potential Energy Surfaces via
Graph Neural Networks

Nicholas Gao, Stephan Günnemann

Department of Computer Science & Munich Data Science Institute
Technical University of Munich, Germany

Recent  advances  in  quantum  chemistry  lead  to  neural  network-based  electronic  wave
functions  within  the  Variational  Monte  Carlo  (VMC)  framework.  While  offering
unprecedented  accuracy  on  various  molecular  systems,  their  training  requires  large
computational  resources.  This  problem  is  amplified  in  the  context  of  potential  energy
surfaces (PES), where one must traditionally repeat the computation for different structures.
In our works123, we tackle this problem by exploiting the generalization capabilities of graph
neural  networks  to  accurately compress  different  wave functions  within a  single  neural
network.  We  accomplish  this  by  developing  a  reparameterization  scheme  where  the
electronic  wave  function  is  conditioned  on  the  molecular  structure  of  the  nuclei.  Such
adaptation allows the joint optimization of different wave functions. In our experimental
evaluation, we find that such a joint optimization comes at no additional computational cost
or loss of accuracy.

1 N. Gao & S. Günnemann, „Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions”, 
International Conference on Representation Learning 2022
2 N. Gao & S. Günnemann, „Sampling-free Inference for Ab-Initio Potential Energy Surface Networks”, International 
Conference on Representation Learning 2023
3 N. Gao & S. Günnemann, „Generalizing Neural Wave Functions”, International Conference on Machine Learning 
2023



Machine learning the Hohenberg-Kohn map
for electronic excited states

Yuanming Bai,1,2,3 Leslie Vogt-Maranto,3 Mark E. Tuckerman,2,3,4,5

William J. Glover1,2,3

1NYU Shanghai, 567 W. Yangsi Road, 200124, Shanghai, China; 2NYU-ECNU Center for
Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, 200062, Shanghai,
China; 3Department of Chemistry, New York University, New York, NY, 10003, USA; 4Simons

Center for Computational Physical Chemistry at New York University, New York, NY, 10003, USA;
5Courant Institute of Mathematical Science, New York University, New York, NY, 10012, USA

Time-Dependent Density-Functional Theory (TDDFT) is the workhorse for computing
electronic excitations in molecules and materials; however, the approximations inherent in
practical TDDFT calculations, together with their computational expense, motivate finding a
cheaper, more direct map for electronic excitations. The existence of such a map is provided
by the  Hohenberg-Kohn theorem of  density-functional  theory,  which  proves  a  bijection
between the ground-state electron density and the external potential of a many-body system.
This guarantees a one-to-one map from the electron density to all observables of interest,
including electronic excited-state energies. Here, we show that multistate density and energy
functionals can be constructed via machine learning.1 The framework is used to perform the
excited-state  molecular  dynamics  simulations  with  a  machine-learned  functional  on
malonaldehyde.  The  simulations  correctly  capture  the  kinetics  of  an  excited-state
intramolecular proton transfer, allowing insight into how mechanical constraints can be used
to control the proton transfer reaction in this molecule.

1 Y. Bai, L. Vogt-Maranto, M. E. Tuckerman, W. J. Glover. Nat. Comm..2022, 13, 7044.



Electron-density and long-range machine
learning methods for the study of

electrochemical interfaces
Andrea Grisafi*, Augustin Bussy**, Mathieu Salanne*, Rodolphe

Vuilleumier***
*Institute of Computing and Data Sciences, Sorbonne Université, CNRS, 75005 Paris,

France
**Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich,

Switzerland
***PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University,

Sorbonne Université, CNRS, 75005 Paris, France

The  computational  study  of  energy  storage  and  conversion  processes  calls  for
simulation techniques that can reproduce the interaction of a metallic surface with an
electrolyte solution under an applied electric bias. I will first introduce an equivariant
machine-learning model of the Kohn-Sham electron density of a system [1], together
with  a  class  of  long-range  structural  representations  able  to  incorporate  non-local
physical effects [2]. I will then show how the combination of the two methods can be
used to reproduce the electronic charge transfer in model metal electrodes, and over
arbitrarily large distances. Moreover, I will show how a finite-field extension of the
method can be derived in order to predict the non-local polarization effect induced by
an externally applied electric field. I will conclude by demonstrating the capability of
the method to reproduce the charge-density response in a gold/electrolyte capacitor
under an applied voltage, predicting the differential capacitance of the system with a
greater accuracy than state-of-the-art classical atomic-charge models [3].

[1] A. Grisafi, A. M. Lewis, M. Rossi, M. Ceriotti,  J. Chem. Theory Comput., 19,
4451 (2023)
[2] A. Grisafi, M. Ceriotti, J. Chem. Phys. 151, 204105 (2019)
[3]  A.  Grisafi,  A.  Bussy,  M.  Salanne,  R.  Vuilleumier,  arXiv  preprint
arXiv:2304.08966, (2023)



AIMNet2: A Neural Network Potential to Meet
your Neutral, Charged, Organic, and

Elemental-Organic Needs
Dylan M. Anstine, Roman Zubatyuk, Olexandr Isayev

Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213, USA

Machine  learned  interatomic  potentials  (MLIPs)  are  reshaping  computational  chemistry
practices  because  of  their  ability  to  drastically  exceed  the  accuracy-length/time  scale
tradeoff. Despite this attraction, the benefits of such efficiency are only impactful when an
MLIP uniquely enables insight into a target system or is broadly transferable outside of the
training dataset, where models achieving the latter are seldom reported. In this work, we
present the 2nd generation of our atoms-in-molecules neural network potential (AIMNet2)1,
which is applicable to species composed of up to 14 chemical elements in both neutral and
charged  states,  making  it  a  valuable  model  for  modeling  the  majority  of  non-metallic
compounds.  Using  an  exhaustive  dataset  of  20  million  hybrid  quantum  chemical
calculations,  AIMNet2 combines  ML-parameterized short-range and physics-based long-
range terms to attain generalizability that reaches from simple organics to diverse molecules
with “exotic” element-organic bonding. We show that AIMNet2 outperforms semi-empirical
GFN-xTB and is  on par  with reference density  functional  theory for  interaction energy
contributions,  conformer  search  tasks,  torsion  rotation  profiles,  and  molecular-to-
macromolecular geometry optimization. Overall, the demonstrated chemical coverage and
computational  efficiency  of  AIMNet2  is  a  significant  step  toward  providing  access  to
MLIPs that avoid the crucial limitation of curating additional quantum chemical data and
retraining with each new application.

1 Anstine  D,  Zubatyuk R,  Isayev O.  ChemRxiv  Preprint.  2023;  https://doi.org/10.26434/chemrxiv-2023-
296ch

Figure 1: Architecture of the AIMNet2 model



Universal machine learning for the response of
atomistic systems to external fields

Bin Jiang

Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui
230026, China

Machine learning methods have been widely used in computational chemistry research in
recent  years,  among which  atomistic  neural  networks  as  the  representation  of  potential
energy surface and response properties have achieved great success. We have developed a
physically inspired machine learning framework, namely embedded atom neural network
(EANN), which uses the electron density of the embedded atom constructed from the linear
combination of atomic orbitals as an atomic descriptor for the local environment1, 2. More
recently,  we propose a universal field-induced recursively embedded atom neural network
(FIREANN) model, which integrates a pseudo field vector-dependent feature into atomic
descriptors to represent system-field interactions with rigorous rotational equivariance. This
“all-in-one”  approach  correlates  various  response  properties  like  dipole  moment  and
polarizability with the field-dependent potential energy in a single model, very suitable for
spectroscopic and dynamics simulations in molecular and periodic systems in the presence
of electric fields3.
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Figure 1: Schematic of FIREANN framework.

1. Y. Zhang, C. Hu and B. Jiang, J. Phys. Chem. Lett., 2019, 10, 4962-4967.
2. Y. Zhang, J. Xia and B. Jiang, Phys. Rev. Lett., 2021, 127, 156002.
3. Y. Zhang and B. Jiang, Nat. Commun., 2023, 14, 6424.



A data-driven Robotic AI-Chemist 

Jun Jiang 

School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 

Anhui 230026, China 

The realization of automated chemical experiments by robots unveiled the prelude of artificial 

intelligent laboratory. Several AI-based systems or robots with specific chemical skills have 

been demonstrated, but conducting all-round scientific research remains challenging.  

We have recently built a robotic AI-chemist system that is capable of proposing scientific 

hypothesis after reading/disgusting existing literature, executing a full set of experiments 

(synthesis, characterization, and performance testing) for multiple chemical tasks, and 

building predictive models utilizing theoretical calculations with experimental data feedback, 

allowing to propose new hypothesis for next iteration. With the help of computations, AI 

chemist has the ability to find the optimal result beyond the chemical space covered by the 

experiments. It means that we have created a robotic AI chemist that is capable of executing 

all-round chemical research with data driven intelligence. In the future, the more advanced 

all-round AI-Chemists equipped with scientific data intelligence may cause changes to 

chemical R&D. 

 

 

 

Figure 1: Three basic components of the robotic AI-Chemist system  



Semi-empirical property predictors for inverse
design

Kjell Jorner

ETH Zürich, Institute of Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, Vladimir-Prelog-Weg 1, Zürich, Switzerland, CH-8093

Inverse design aims to deduce molecular structures directly from desired function.1 Property
predictors  compute  the  function  of  the  molecules  suggested  by  generative  models.
Oversimplistic predictors or machine learning models are often used, and the generative
models  learn to “hack” these with rather  meaningless molecules as a result.2 Quantum-
chemical calculations are better, but prohibitively expensive.

Here,  we  described  the  development  of  several  property  predictors  based  on  semi-
empirical (quantum chemistry) methods for applications to organic electronic materials and
chemical reactivity. The methods are old and have been neglected over time in favor of
more rigorous, but more expensive quantum chemical methods. For aromatic compounds,
we  have  developed  an  automated  version  of  the  superaromatic  stabilization  energy  of
Aihara.3 For OLED materials, we have developed a method based on perturbation-theory-
augmented Pariser-Parr-Pople theory.4 For chemical reactivity, we have developed a black-
box implementation  of  the  SEAM force  field  method5 and  applied  it  for  a  task  in  the
TARTARUS benchmark  suite  for  generative  models.  All  models  are  open-sourced  and
available on GitHub. 
a b

Figure 1 (a) Fast reactivity estimation using the SEAM model. (b) Perturbation theory for 
description of OLED materials with inverted singlet-triplet gaps.

1 Sanchez-Lengeling, B.; Aspuru-Guzik, A. Science 2018, 361 (6400), 360–365
2 Gendreau, P.; Turk, J.-A.; Drizard, N.; Ribeiro Da Silva, V. B.; Descamps, C.; Gaston-Mathé, Y. J. Chem. Inf. Model. 
2023, 63 (13), 3983–3998.
3 Aihara, J. Bull. Chem. Soc. Jpn. 2018, 91 (2), 274–303.
4 Kollmar, H.; Staemmler, V. Theor. Chim. Acta 1978, 48 (3), 223–239.
5 Jensen, F. J. Am. Chem. Soc. 1992, 114 (5), 1596–1603.



Machine Learning Aided Quantum Chemistry
Discovery in the Solution Phase

Fang Liu, Eugen Hruska, Ariel Gale, Xu Chen, Fangning Ren, 
Patrick Li, Rohit Gadde, Sangni Xun

Emory University, Atlanta, Georgia, USA

Although  numerous  critical  chemical  processes  occur  in  the  solution  phase,  datasets
(computational  or  experimental)  and  machine-learning  (ML)  models  for  solution-phase
molecular  systems are  still  scarce.  My research  group’s  objective  is  to  overcome these
challenges for quantum chemistry discovery in the solution phase. 

To enable the efficient generation of computational datasets of solvated molecular
systems, we developed strategies to accelerate both the implicit and explicit solvent models
for quantum chemistry calculations. For the implicit conductor-like polarization model (C-
PCM), we developed algorithms on the graphical processing units (GPUs) to accelerate the
calculation.123 For the explicit solvent model, we developed AutoSolvate,4 an open-source
toolkit to streamline the QC calculation workflow of explicitly solvated molecules. To make
these tools more accessible, we are developing a web-based platform to offer automated
simulations of solvated molecules on cloud computing resources and publicly disseminate
the datasets to the computational molecular science communities.

To improve the accuracy of the quantum chemistry generated solution-phase chem-
istry datasets, we develop ML models to reduce the discrepancy between experimental mea-
surements and computationally predicted molecular properties in both implicit and explicit
solvent models.5 This ML correction technique has been applied to predict redox potential
and absorption/fluorescence wavelength in the solution phase.6 We are also developing data-
driven recommendations of parameters for quantum chemistry calculations in the implicit
solvent in order to reduce errors in the calculated excited state properties.

1 F. Liu, N. Luehr, H. J. Kulik, and T. J. Martínez, J. Chem. Theory Comput. 11, 3131 (2015).
2 F. Liu, D. M. Sanchez, H. J. Kulik, and T. J. Martínez, Int. J. Quantum Chem 119, e25760 (2019).
3 A. Gale, E. Hruska, and F. Liu, J Chem. Phys. 154, 244103 (2021).
4 E. Hruska, A. Gale, X. Huang, and F. Liu, ibid.156, 124801 (2022).
5 E. Hruska, A. Gale, and F. Liu, J. Chem. Theory Comput. 18, 1096 (2022).
6 X. Chen, P. Li, E. Hruska, and F. Liu, Phys. Chem. Chem. Phys. 25, 13417 (2023).



LASP Software for Large-Scale Catalysis
Simulations

Zhi-Pann Liu

Department of Chemistry, Fudan University, Shanghai, China

This lecture introduces our recent progress in LASP (Large-scale Atomic Simulation with
neural network Potential) software (www.lasphub.com) and its application in catalysis. In
2018 we designed a “Global-to-Global” approach for material discovery by combining our
SSW (stochastic surface walking) global optimization method with neural network (NN)
techniques, which leaded to the SSW-NN method and the global neural network (G-NN)
potential method1. The SSW-NN method is the key functionality of LASP software and has
been utilized widely in solving different challenging problems. A recent progress in LASP is
the implemtation of the many-body function corrected global neural network potential (G-
MBNN),  which  shows  a  great  advantage  in  improving  the  large-range  interaction  and
reaction actiity prediction.2 I will also introduce a number of LASP applications from our
group, for example gas phase clusters, complex catalysts and interfaces in semiconducting
devices, to demonstrate the automated global data set generation, the improved NN training
procedure  and  the  application  in  global  structure  determination.  As  a  general  tool  for
material simulation, the SSW-NN method provides an efficient and predictive platform for
obtaining material properties. 

1. Pei-Lin Kang,  Cheng Shang, Zhi-Pan Liu, Large-Scale Atomic Simulation via  Machine
Learning Potentials Constructed by Global Potential Energy Surface Exploration,  Acc.
Chem. Res .2020,      53, 2119     

2. Pei-Lin Kang, Zheng-Xin Yang, Cheng Shang, Zhi-Pan Liu, Global Neural Network Po-
tential with Explicit Many-body Functions for Improved Descriptions of Complex Poten-
tial  Energy  Surface, J.  Chem.  Theory  Comput.  ,  2023,  https://doi.org/10.1021/
acs.jctc.3c00873s 

Figure 1: G-MBNN potential
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Machine learning of electronic structure for
quantum dynamics and molecular design

Reinhard J. Maurer
Department of Chemistry and Department of Physics, University of Warwick, UK

Atomistic  simulation  based  on  quantum  mechanics  (QM)  is  currently  being
revolutionized by machine-learning (ML) methods. Many existing approaches use ML to
predict  molecular  properties  from  quantum  chemical  calculations.  This  has  enabled
molecular property prediction within vast chemical compound spaces and high-dimensional
parametrization of energy landscapes for the efficient simulation of measurable observables.
However, as all properties derive from the QM wave function, an ML model that can predict
the  wave  function  also  has  the  potential  to  predict  other  properties.  In  this  talk,  I  will
explore ML approaches that directly represent wave functions and QM Hamiltonians and
their derivatives for developing methods that use ML and QM in synergy. Using example
systems from heterogeneous catalysis and organic electronics, I will discuss the challenges
associated  with  encoding  physical  symmetries  and  invariance  properties  into  machine
learning models of electronic structure. Upon overcoming these challenges, integrated ML-
QM methods offer the combined benefits of data-driven parametrization and first-principles-
based methods. I will discuss several opportunities associated with building ML-augmented
quantum chemical  methods,  including Inverse  Chemical  Design based on ML-predicted
wave functions and the development of efficient and accurate surrogate models to study
materials chemistry.



Deep generative models for biomolecular
engineering

Rocío Mercado Oropeza

Department of Computer Science and Engineering
Chalmers University of Technology

AI  is  transforming  our  approach  to  molecular  engineering.  Driven  by  the  goal  of
accelerating  drug  development,  our  aim  is  to  develop  AI-driven  molecular  engineering
methods  which  will  enhance  our  approach  to  biomolecular  discovery,  such  as  drug
discovery,  drug  repurposing,  and  chemical  probe  identification.  This  entails  the
development of generative and predictive tools that can learn from biochemical data, such
as molecular structures, chemical reactions, and biomedical data. While AI can be applied to
a range of molecular engineering tasks, one ideal area is de novo molecular design. De novo
design is the concept of designing molecules with desired properties from scratch so as to
minimize  experimental  screening,  and  is  poised  to  allow  scientists  to  more  efficiently
traverse chemical space in search of optimal molecules, and delegate error-prone decisions
to computers via the use of predictive and generative models. In drug development, de novo
design methods can aid medicinal chemists in the design and selection of drug candidates,
with the  added advantage  that  they can learn from datasets  of  billions  of  molecules  in
minutes and be constantly updated with new data. Deep molecular generative models are a
particular approach to de novo design which uses deep neural networks to generate new
molecules  in  silico,  and  works  by  proposing  atom-by-atom  (or  fragment-by-fragment)
modifications to an initial graph structure to generate compounds predicted to achieve a
certain property profile. Such models can be applied to a range of therapeutic modalities.

In  this  talk,  I  will  discuss  the  development  of  deep  generative  models  for  various
molecular engineering tasks relevant to early-stage drug discovery. These include a model
for synthesizability-constrained molecular generation, a reinforcement learning framework
for molecular graph optimization, and recent applications from our group to the design of
large modalities for targeted protein degradation.



Natural Quantum Monte Carlo Computation
of Excited States

David     Pfau  1,2, Simon Axelrod1,3, Halvard Sutterud2, Ingrid von
Glehn1, James S. Spencer1

1Google DeepMind, London UK
2Imperial College London, London UK

3Harvard University, Cambridge, MA, USA

In recent years, tools from machine learning have found useful application
in  computational  quantum  mechanics,  especially  in  making  variational
quantum Monte Carlo (VMC) calculations far more accurate. These calculations
mostly focus on the ground state, while excited state calculations remain more
challenging.  In  this  talk,  I  will  present  a  VMC algorithm for  estimating the
lowest excited states of a quantum system which is a natural generalization of
the  estimation of  ground states.  The method has  no free  parameters  and
requires  no  explicit  orthogonalization  of  the  different  states,  instead
transforming the problem of finding excited states of a given system into that
of  finding  the  ground  state  of  an  expanded  system.  Expected  values  of
arbitrary  observables  can be calculated,  including off-diagonal  expectations
between different states such as the transition dipole moment. Although the
method is entirely general, it works particularly well in conjunction with recent
work  on  using  neural  networks  as  variational  Ansatze  for  many-electron
systems, and we show that by combining this method with the FermiNet and
Psiformer Ansatze we can accurately recover vertical excitation energies and
oscillator strengths on molecules as large as benzene. Beyond the examples
on molecules presented here, we expect this technique will be of great interest
for applications of variational  quantum Monte Carlo to atomic,  nuclear and
condensed matter physics.



Lifelong Machine Learning Potentials 
Markus Reiher

ETH Zurich, Dep. of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich,
Switzerland. 

Machine learning potentials (MLPs) can retain the high accuracy of underlying quantum
chemical training data and enable simulations of extended systems with little computational
cost.  On the  downside,  the  training  needs  to  be  performed for  each individual  system.
However,  extensions of MLP representations by learning additional data usually require
demanding  retraining  on  all  training  data  to  avoid  forgetting  of  previous  knowledge.
Moreover, common MLP descriptors cannot represent efficiently many different chemical
elements.  As a consequence,  a large number of MLPs has been trained from scratch in
recent years. We tackle these issues by the introduction of element-embracing atom-centered
symmetry functions that are combined descriptors for structure and element information. In
addition, we exploit uncertainty quantification to enable a continuously adapting lifelong
machine  learning  potential  (lMLP)1 instead  of  a  fixed,  pre-trained  MLP by  ensuring  a
predefined accuracy level. To extend lMLP representations, we apply incremental learning
strategies  relying  on  data  rehearsal,  parameter  regularization,  and  model  architecture.
Further,  we propose the continual resilient (CoRe) optimizer1,2 for fast convergence and
high accuracy in lifelong learning of deep neural networks on a continuous stream of new
data. Moreover, we show that the CoRe optimizer outperforms many other state-of-the-art
optimizers in diverse machine learning tasks. 

[1]  M.  Eckhoff,  M.  Reiher,  Lifelong  Machine  Learning  Potentials,  J.  Chem.  Theory
Comput. 2023, 19, 3509–3525. 

[2]  M.  Eckhoff,  M.  Reiher,  CoRe  Optimizer:  An  All-in-One  Solution  for  Machine
Learning, arXiv:2307.15663 [cs.LG] 2023. 



Construction of orbital-free DFT scheme and
its evaluation by ML

Junji Seino1,2

1Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda
University, Tokyo, 169-8555, Japan

2Waseda Research Institute for Science and Engineering, Tokyo, 169-8555, Japan

Density  functional  theory  (DFT)  is  one  of  the  most  popular  schemes  for  obtaining
electronic  states  and  their  properties  in  molecules  and  materials.  The  total  energy  of
electrons can be written as a functional of the electron density information. The kinetic and
exchange-correlation energies, which are components in the total energy, have approximate
formulae  because  the  exact  expressions  are  unknown.  For  the  kinetic  energy (KE),  the
majority use the Kohn−Sham (KS) expression, which introduces a set of one-electron KS
orbitals instead of using the explicit functional in terms of electron density. However, the
orbital-free (OF-)DFT with the practically accurate KEDF has possibilities to realize further
efficient calculations of electronic states for large molecules. The present study attempts to
predict the KEDF using machine learning (ML). The present scheme adopts electron density
information and distances between grid points and centers of nuclei as descriptors, and the
KE density of KS as the objective value. The ML KEDF provides closer KEs in KS than
conventional KEDFs.1 The scheme reproduces the potential energy curves in KS for single,
double, and triple bonds with several elements.2 Furthermore, the ML potential functional
were constructed for the optimization of electron density in the OF-DFT framework with the
Gaussian basis functions.3 

For the correlation energy, we also proposed an ML correlation model that is built using
the regression between density variables such as electron density and correlation energy
density.4 The correlation energy density of coupled cluster singles, doubles, and perturbative
triples [CCSD(T)] is derived based on grid-based energy density analysis. In addition, the
scheme was extended to the frozen core calculations.5

In DFT calculations based on ML, the applicability in terms of accuracy is considerably
important. Thus, a scheme for evaluations of DFT calculations using a clustering method
based on ML and structural/electronic descriptors was developed.6 We generated 36 clusters
consistent  with human intuition using 30,436 carbon atoms from the QM9 dataset.  The
results in the clustering method were used to evaluate results in DFT.

1J. Seino, R. Kageyama, M. Fujinami, Y. Ikabata, and H. Nakai, J. Chem. Phys. 2018, 148, 241705.
2J. Seino, R. Kageyama, M. Fujinami, Y. Ikabata, and H. Nakai, Chem. Phys. Lett. 2019, 734, 136732.
3M. Fujinami, R. Kageyama, J. Seino, Y. Ikabata, and H. Nakai, Chem. Phys. Lett. 2020, 748, 137358.
4T. Nudejima, Y. Ikabata, J. Seino, T. Yoshikawa, and H. Nakai, J. Chem. Phys. 2019, 151, 024104.
5Y. Ikabata, R. Fujisawa, J. Seino, T. Yoshikawa, and H. Nakai, J. Chem. Phys. 2020, 153, 184108.
6Y. Nakajima, T. Ohmura, and J. Seino, submitted.



On Electrons and Machine Learning Force
Fields

Alexandre Tkatchenko

Department of Physics and Materials Science, University of Luxembourg, Luxembourg

Machine Learning Force Fields (MLFF) should be accurate, efficient, and applicable to
molecules,  materials,  and  interfaces  thereof.  The  first  step  toward  ensuring  broad
applicability and reliability of MLFFs requires a robust conceptual understanding of how to
map  interacting  electrons  to  interacting  "atoms".  Here  I  discuss  two  aspects:  (1)  how
electronic  interactions  are  mapped  to  atoms  with  a  critique  of  the  "electronic
nearsightedness" principle, and (2) our developments of symmetry-adapted gradient-domain
machine learning (sGDML) framework for MLFFs generally applicable for modeling of
molecules,  materials,  and  their  interfaces.  I  highlight  the  key  importance  of  bridging
fundamental physical priors  and conservation laws with the flexibility of non-linear ML
regressors to achieve the challenging goal of constructing chemically-accurate force fields
for a broad set of systems. Applications of sGDML will be presented for small and large
(bio/DNA) molecules, pristine and realistic solids, and interfaces between molecules and 2D
materials.  In  addition,  I  will  briefly  report  on  the  results  of  the  recent  “Crash  Testing
MLFF” workshop held in Luxembourg that convened many of the leading developers of
MLFFs and MLPs.

[Refs]  Nature  Commun.  13,  3733  (2022);  Sci.  Adv.  3,  e1603015  (2017);  Nature
Commun. 9, 3887 (2018); Comp. Phys. Comm. 240, 38 (2019); J. Chem. Phys. 150, 114102
(2019); Sci. Adv. 5, eaax0024 (2019).



Active learning for data-efficient 
optimisation of functional materials

Milica Todorovi  ć  

Dept. of Mechanical and Materials Engineering, University of Turku, 20014 Finland

The arrival of materials science data infrastructures in the past decade has ushered in the
era of data-driven materials science based on artificial intelligence (AI) algorithms, which
has facilitated breakthroughs in materials optimisation and design. Of particular interest are
active learning algorithms, where datasets are collected on-the-fly in the search for optimal
solutions.  We  encoded  such  a  probabilistic  algorithm  into  the  Bayesian  Optimization
Structure Search (BOSS) Python tool for materials optimisation1.

BOSS builds N-dimensional surrogate models for materials’ energy or property landscapes
to infer global optima, allowing us to conduct targeted materials engineering. The models
are  iteratively  refined  by  sequentially  sampling  materials  data  with  high  information
content.  This  creates  compact  and  informative  datasets.  We  utilised  this  approach  for
computational density functional theory studies of molecular surface adsorbates2, thin film
growth3, solid-solid interfaces4 and molecular conformers5. With experimental colleagues,
we applied BOSS to accelerate the development of novel materials with targeted properties6,
and  to  optimise  materials  processing7.  With  recent  multi-objective  and  multi-fidelity
implementations for active learning, BOSS can make use of different information sources to
help us discover optimal solutions faster. 

1 M. Todorović, npj Comput. Mater., 5, 35 (2019)
2 J. Järvi, Beilstein J. Nanotechnol. 11, 1577-1589 (2020), Adv. Func. Mater., 31, 2010853 (2021)
3 A. Egger, et al., Adv. Sci. 7, 2000992 (2020)
4 A. Fangnon, et al.,ACS Appl. Mater. Interfaces 14 (10), 12758-12765 (2022)
5 L. Fang, et al., J. Chem. Theory Comput. 17, 1955 (2020)
6 S-A Jin, et al., MRS Bulletin 47, 29-37 (2022)
7 J. Löfgren, et al., ACS Sustainable Chem. Eng. 10, 9469 (2022)



Exploration of the Two-electron Correlation
Space with Data-driven Quantum Chemistry

Konstantinos D. Vogiatzis

Department of Chemistry, University of Tennessee, Knoxville, TN, USA

The data-driven computational methodology developed by our group combines quantum
chemistry  with  machine  learning  (ML)  to  surpass  size  limitations  of  accurate  but
computationally  demanding  methods  such as  coupled-cluster  (CC).  We have  previously
demonstrated the speedup and transferability that the data-driven CCSD (DDCCSD) model
can achieve.1,2,3 One major limitation of the DDCC models is the size of the training sets
that increases exponentially with the system size.  We have recently introduced effective
sampling  of  the  amplitude  space  as  a  solution  to  this  issue.  Five  different  amplitude
selection techniques that reduce the amount of data used for training were evaluated, an
approach that also prevents model overfitting and increases DDCCSD portability to more
complex molecules or larger basis sets. Extension to perturbative triples (T) and alternative
architectures  based  on  graph  neural  networks  will  be  also  discussed.  Finally,  we  have
extended this approach to other quantum chemical methods, such as the variational 2-RDM
(v2RDM).4

1 Townsend, K. D. Vogiatzis, J. Phys. Chem. Lett., 2019, 10, 4129.
2 J. Townsend, K. D. Vogiatzis, J. Chem. Theory Comput., 2020, 16, 7453.
3 G. M. Jones, P. D. V. S. Pathirage, K. D. Vogiatzis, Data-driven Acceleration of Coupled-Cluster Theory 
and Perturbation Theory Methods, in: “Quantum Chemistry in the Age of Machine Learning”, 2022, Editor: 
Pavlo Dral, Elsevier, pp. 509-529.
4 G. M. Jones, R. R. Li, A. E. DePrince III, K. D. Vogiatzis J. Phys. Chem. Lett., 2023, 14, 6377.



Quantum chemical Hamiltonians as flexible
and interpretable model forms for machine

learning
David Yaron, and Frank Hu

Department of Chemistry, Carnegie Mellon University, Pittsburgh PA 15213

The high computational cost of quantum chemistry is currently a primary imitation on the size
and type of systems that can be studied. Machine learning (ML) provides a means to dramatically
lower cost while maintaining high accuracy. However, ML models often sacrifice interpretability by
using components, such as the artificial neural networks of deep learning, that function as black
boxes. These components impart  the flexibility needed to learn from large volumes of data but
make it difficult to gain insight into the physical or chemical basis for the predictions. Here, we
demonstrate that semiempirical quantum chemical (SEQC) models can learn from large volumes of
data without sacrificing interpretability. The SEQC model is that of Density Functional based Tight
Binding  (DFTB)  with  fixed  atomic  orbital  energies  and  interactions  that  are  one-dimensional
functions  of  interatomic  distance.  This  model  is  trained  to  ab  initio  data  in  a  manner  that  is
analogous to that used to train deep learning models. Using benchmarks that reflect the accuracy of
the training data, we show that the resulting model maintains a physically reasonable functional
form while achieving an accuracy, relative to coupled cluster energies with a complete basis set
extrapolation (CCSD(T)*/CBS), that is comparable to that of density functional theory (DFT). This
suggests that trained SEQC models can achieve low computational cost and high accuracy without
sacrificing interpretability. Use of a physically-motivated model form also substantially reduces the
amount of ab initio data needed to train the model compared to that required for deep learning
models.



Finite-field molecular dynamics simulation
goes machine-learned

Chao Zhang

Department of Chemistry  Ångström Laboratory, Uppsala University
Lägerhyddsvägen 1,

Box 538, 75121 Uppsala, Sweden
chao.zhang@kemi.uu.se 

Physical chemistry of electrified interfaces and ionic solutions plays a fundamental role in
energy-related  applications  such  as  electrocatalysis,  supercapacitors,  fuel  cells,  and
batteries.  A  realistic  representation  of  these  electrochemical  systems  requires  treating
electronic,  structural,  and  dynamic  properties  on  an  equal  footing.  Density  functional
theory-based molecular dynamics (DFTMD) is perhaps the only approach that can provide a
consistent atomistic description. 

Here, I will first discuss our recent progress in modelling the protonic double layer at metal-
oxide/electrolyte interfaces using finite-field  DFTMD simulations [1]. Then, this is followed
by our new effort on simulating electrified metal/electrolyte interfaces and deploying its
machine-learning version with the PiNN code [2].

Reference:
[1] Knijff, L., Jia, M. and Zhang, C. Encyclopedia of Solid-Liquid Interfaces, 2024, 2: 567 
[2] Dufils, T., Knjiff, L., Shao, Y. and Zhang, C. J. Chem. Theory Comput., 2023, 19: 5199
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